Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase genes in rhizosphere of As-hyperaccumulator Pteris vittata.

نویسندگان

  • Yong-He Han
  • Jing-Wei Fu
  • Ping Xiang
  • Yue Cao
  • Bala Rathinasabapathi
  • Yanshan Chen
  • Lena Q Ma
چکیده

Microbially-mediated arsenic (As) transformation in soils affects As speciation and plant uptake. However, little is known about the impacts of As on bacterial communities and their functional genes in the rhizosphere of As-hyperaccumulator Pteris vittata. In this study, arsenite (AsIII) oxidase genes (aroA-like) and arsenate (AsV) reductase genes (arsC) were amplified from three soils, which were amended with 50mgkg-1 As and/or 1.5% phosphate rock (PR) and grew P. vittata for 90 d. The aroA-like genes in the rhizosphere were 50 times more abundant than arsC genes, consistent with the dominance of AsV in soils. According to functional gene alignment, most bacteria belonged to α-, β- and γ-Proteobacteria. Moreover, aroA-like genes showed a higher biodiversity than arsC genes based on clone library analysis and could be grouped into nine clusters based on terminal restriction fragment length polymorphism (T-RFLP) analysis. Besides, AsV amendment elevated aroA-like gene diversity, but decreased arsC gene diversity. Redundancy analysis indicated that soil pH, available Ca and P, and AsV concentration were key factors driving diverse compositions in aroA-like gene community. This work identified new opportunities to screen for As-oxidizing and/or -reducing bacteria to aid phytoremediation of As-contaminated soils.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L.

The role of arsenic-resistant bacteria (ARB) in arsenic solubilization from growth media and growth enhancement of arsenic-hyperaccumulator Pteris vittata L. was examined. Seven ARB (tolerant to 10 mM arsenate) were isolated from the P. vittata rhizosphere and identified by 16S rRNA sequencing as Pseudomonas sp., Comamonas sp. and Stenotrophomonas sp. During 7-d hydroponic experiments, these ba...

متن کامل

Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L.

This greenhouse experiment evaluated the influence of arsenic uptake by arsenic hyperaccumulator Pteris vittata L. and non-arsenic hyperaccumulator Nephrolepis exaltata L. on arsenic chemistry in bulk and rhizosphere soil. The plants were grown for 8 weeks in a rhizopot with a soil containing 105 mg kg(-1) arsenic. The soil arsenic was fractionated into five fractions with decreasing availabili...

متن کامل

Characterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulator Pteris vittata.

Arsenic hyperaccumulator fern Pteris vittata L. produces large amounts of root exudates that are hypothesized to solubilize arsenic and maintain a unique rhizosphere microbial community. Total heterotrophic counts on rich or defined media supplemented with up to 400 mmol/L of arsenate showed a diverse arsenate-resistant microbial community from the rhizosphere of P. vittata growing in arsenic-c...

متن کامل

Arsenic-hyperaccumulator Pteris vittata efficiently solubilized phosphate rock to sustain plant growth and As uptake.

Phosphorus (P) is one of the most important nutrients for phytoremediation of arsenic (As)-contaminated soils. In this study, we demonstrated that As-hyperaccumulator Pteris vittata was efficient in acquiring P from insoluble phosphate rock (PR). When supplemented with PR as the sole P source in hydroponic systems, P. vittata accumulated 49% and 28% higher P in the roots and fronds than the -P ...

متن کامل

Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata.

This greenhouse experiment evaluated the effects of phosphate rock (PR) on arsenic and metal uptake by the arsenic hyperaccumulator Pteris vittata in a soil spiked with arsenic and heavy metals Cd, Pb and Zn. Five soil treatments were used, 1) control with no arsenic, 2) spiked with 50 mg kg(-1) As (As) as Na2H AsO4, 3) spiked with 50 mg kg(-1) As and P as PR (AsP), 4) spiked with 50 mg kg(-1) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of hazardous materials

دوره 321  شماره 

صفحات  -

تاریخ انتشار 2017